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1. Introduction

Quasi-particle model (qQGP) of quark gluon plasma (QGP) was first proposed by Peshier

et al. [2] to explain the non-ideal equation of state (EoS), observed in lattice gauge theory

simulations (LGT) [3]. At finite temperature, instead of real quarks and gluons with QCD

(quantumchromodynamics) interactions we may as well consider the system to be made up

of non-interacting quasi-particles with thermal masses, quasi-quarks and quasi-gluons, and

study the thermodynamics. Quasi-particles are quanta of plasma collective modes excited

by quarks and gluons through QCD interactions. Initial quasi-particle model was found to

be thermodynamically (TD) inconsistent [4] and also not able to fit the more recent LGT

results [5]. Gorenstein and Yang reformulated the statistical mechanics (SM) to solve the

inconsistency, but end up with an extra undetermined, temperature dependent terms in

the expressions for pressure and energy density. This extra term was fixed, forcefully, by

applying a constraint relation such that the TD inconsistency term was cancelled. However,

as we discuss here [6], above reformulation of SM is not needed and standard SM may be

applied to qQGP without any constraints. There is no TD inconsistency in our new qQGP

model. Peshier’s model with reformulated SM by Gorenstein and Yang has been studied

by various groups [7 – 11] with different expressions for thermal masses, effective degrees

of freedom, so on. Note that all of above works are based on the reformulation of SM of

Gorenstein and Yang. The reason for the TD inconsistency is the wrong choice of pressure

and in fact, it must be derived from the partition function as done in text books [12]. A

critical comments on these models [2, 4] and our model is discussed in ref. [6] in detail. As

we have shown in ref. [6], we may skip this TD inconsistency problem and instead use the

original definition of ε and n, and making use of TD relations we may get all TD quantities.

As a specific example, here we discuss (2+1)-flavor QGP, studied by Fodor et al. [1] using

LGT.

Of course, there are other models like HTL (hard thermal loop) [13], recent FMR (fun-

damental modular region) gas [14] etc. based on QCD perturbative and non-perturbative
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calculations, but fails to fit LGT results near to the transition temperature Tc. At the

same time phenomenological models of QGP, based on plasma theory with QCD inputs

like SCQGP (strongly coupled quark gluon plasma) [15], our present qQGP model seems to

fit remarkably well the LGT results with minimum number of parameters. All other qQGP

models, field theoretical models [16], Ploykov loop models [17], HTL qQGP models [18]

also fit LGT results, but by adjusting 3 or more parameters. Of course, we know that near

T = Tc, region of phase transition or cross over, it is a low energy phenomena and hence

QCD can not be solved by analytical methods like perturbation theory because the cou-

pling constant αs is not small enough. Probably we need to formulate phenomenological

models, just like in the case of hadron spectroscopy, to study TD of QGP near TC .

2. Phenomenological Model with µ = 0

QGP at thermodynamic equilibrium consists of interacting quarks and gluons which ex-

hibits collective behaviour. Our basic assumption is that this system may be replaced by

a system of non-interacting quasi-particles with quantum numbers of quarks and gluons.

These quasi-particles have additional thermal masses which are equal to plasma frequen-

cies. Here we differ from other qQGP models where, for example, the thermal mass was

taken to be
√

3/2 times the plasma frequency. A general expression for thermal mass or

polarization tensor is very complicated expressions which is a function of momentum and

frequency. Only at high momentum limit it approaches a simpler form which on further

approximations reduces to above form. In view of such a drastic approximation and since

we use phenomenological model we may as well take mth ≈ ωp. This is motivated from

a similar work in ultra-relativistic (e, e+, γ) system [19] where they used mth ≈ ωp and

found that the error was less than 3%. In fact with this relation, we get better result

than with mth ≈
√

3/2 ωp. Further important point is that the above dispersion relation

is obtained using perturbation methods with temperature dependent density distribution

function appropriate to ideal system. Then one formulates TD of a non-ideal system. In

principle, this must be carried out in a self-consistent manner as discussed in ref. [20],

where, for example, density expression is an integral equation since ωp depends on density.

So we need to solve an integral equation self-consistently to get the the density. Here we

avoid all above complications and as a phenomenological input, we assume that mth = ωp.

Following the standard procedure of statistical mechanics [12], the grand partition

function is defined as,

QG =
∑

s,r

e−βEr−αNs , (2.1)

where the sum is over energy states Er ≡
∑

k ǫk nk +E0, and particle number states Ns. E0

is the vacuum energy which we neglect as an approximation without any TD inconsistency,

which will be discussed later. ǫk and nk are the single particle energy state and occupation

number, respectively. α and β are defined as α ≡ −µ/T and β ≡ 1/T where T and µ are

temperature and chemical potential respectively. Next on further simplifications [12], we
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get,

q ≡ ln QG = ∓
∞

∑

k=0

gk ln(1 ∓ z e−βǫk) , (2.2)

where q is called q-potential and ∓ for bosons and fermions. gk is the degeneracy factor.

z ≡ eµ/T = e−α is called fugacity. ǫk is the single particle energy, given by,

ǫk =
√

k2 + m2 ,

where k is momentum and m is the total mass which contains both the rest mass and

thermal mass (mth) of particles. mth may depend on temperature T and chemical potential

µ depending on QGP system. With vacuum energy E0, we may get an additional term

−β E0 for the q-potential. The equation for the q-potential, eq. (2.2), may be further

simplified by taking the continuum limit to get,

q = ∓
V

(2π)3

∫

d3k gk ln(1 ∓ ze−βǫk) . (2.3)

Note, that all other quasiparticle QGP models [7, 4, 8 – 11] assume that the pressure

is equal to the q-potential, and proceed to evaluate other TD quantities using additional

consistency conditions as initiated in ref. [4]. In ref. [6] we proposed instead to define the

grand canonical ensemble by the average energy density (ε) and average particle number

density (n) and derive the pressure using a standard TD relation. The energy density is

defined as,

ε ≡
< Er >

V
=

1

V

∑

s,r Er e−βEr−αNs

QG
= −

1

V

∂

∂β
ln QG =

1

V

∑

k

gk
z ǫke

−βǫk

1 ∓ z e−βǫk

, (2.4)

which on continuum limit,

ε =
1

(2π)3

∫

d3k gk
ǫk

(z−1eβǫk ∓ 1)
. (2.5)

Similarly, the particle number density is defined as,

n =
< N >

V
≡

1

V

∑

s,r Ns e−βEr−αNs

QG

= −
1

V

∂

∂α
ln QG

=
1

V
z

∂

∂z
ln QG

=
1

V

∑

k

gk
z e−βǫk

1 ∓ z e−βǫk

, (2.6)

which on continuum limit gives,

n =
1

(2π)3

∫

d3k gk
1

(z−1eβǫk ∓ 1)
. (2.7)
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Hence, using the definition of average energy density and average number density, we

have obtained two thermodynamic quantities ε and n from the partition function. The

expression for ε, eq. (2.5) may be further simplified as,

ε =
gf T 4

2π2

∞
∑

l=1

(±1)l−1zl 1

l4

[

(

m l

T

)3

K1

(

m l

T

)

+ 3

(

m l

T

)2

K2

(

m l

T

)

]

, (2.8)

where gf is the degeneracy and equal to gg ≡ 16 for gluons and equal to 12nf for quarks. nf

is the number of flavors with same mass. K1 and K2 are modified Bessel functions of order 1

and 2 respectively. Note that we have neglected the extra B(T ) term in the energy density,

coming from the vacuum energy E0. It is a general assumption in quasiparticle models,

like Debye’s theory of specific heats, liquid helium etc., that the whole thermal energy is

used to excite quasiparticles above the vacuum energy at the transition temperature. A

similar calculations and comments with the vacuum energy is presented in ref. [6].

Let us now consider our main topic, (2+1)-flavor system, studied by Fodor et al. [1],

using our model. It is a QGP with two light (u) and one heavy (s) quarks along with

gluons. Let us first consider the case with zero chemical potential and take z = 1. Hence

we get the energy density, expressed in terms of e(T ) ≡ ε/εs, for the quark gluon plasma

of quasi-partons is

e(T ) =
15

π4

1

(gf + 21
2

neff
f )

∞
∑

l=1

1

l4

(

gf

[

(

mg l

T

)3

K1

(

mg l

T

)

+ 3

(

mg l

T

)2

K2

(

mg l

T

)

]

+12neff
u (−1)l−1

[

(

mu l

T

)3

K1

(

mu l

T

)

+ 3

(

mu l

T

)2

K2

(

mu l

T

)

]

+12neff
s (−1)l−1

[

(

ms l

T

)3

K1

(

ms l

T

)

+ 3

(

ms l

T

)2

K2

(

ms l

T

)

])

, (2.9)

where εs is the Stefan-Boltzman gas limit of QGP, which may be obtained by taking high

temperature limits of eq. (2.8) for gluons and quarks separately and adding them. mg is

the temperature dependent gluon mass (mth), which is equal to the plasma frequency, i.e,

m2
g = ω2

p = g2T 2

18
(2Nc + nf ). All quarks have both the thermal mass as well as the rest

mass and hence, the total mass may be written as

m2
q = m2

q0 +
√

2 mq0 mth + m2
th , (2.10)

following the idea used in other qQGP models for the system with finite quark masses.

Only the difference is that our mth is equal to the plasma frequency due to quarks alone.

That is, m2
th

= ω2
p = g2T 2

18
nf . mq0 is the rest mass of up or strange quark. g2 in thermal

masses is related to the two-loop order running coupling constant, given by,

αs(T ) =
6π

(33 − 2nf ) ln(T/ΛT )

(

1 −
3(153 − 19nf )

(33 − 2nf )2
ln(2 ln(T/ΛT ))

ln(T/ΛT )

)

, (2.11)

where ΛT is a parameter related to QCD scale parameter. Using thermal masses with above

αs, we can evaluate the e(T ) from eq. (2.8). Note that the only temperature dependence in
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Figure 1: Plots of P/T 4 as a function of T/Tc from our model and lattice results (symbols) [1] for

(2+1)-flavor QGP.

e(T ) comes from αs(T ), which has the same form as that of lattice simulations [21] with ΛT

as a free parameter. neff
u and neff

s are effective number of quarks with up and strange flavor,

which differ from 2 and 1, respectively, because of finite masses. However, handling of finite

rest masses of quarks are different in LGT studies of Fodor et al. and Bielefeld group [21].

Bielefeld group carried out the simulation with the ratio mq0/T equal to constant and it

is straight forward to calculate neff
q , where as Fodor et al. used constant mq0 and it is not

clear how to calculate neff
q . Hence as done in ref. [22] we take in our calculations neff

u = 2,

neff
s = 0.5 and neff

f = 2.5. Similar normalization need to be made to fit the LGT results in

other models also, either multiplying LGT data with a factor 1.1 [9] or model’s data with

.9 [11], or sometime using massive gluon [23] so on. From ε, we may obtain pressure P by

using a TD relation ε = T ∂P
∂T − P for µ = 0 system and we get

P

T
=

P0

T0

+

∫ T

T0

dT
ε(T )

T 2
, (2.12)

where P0 and T0 are pressure and temperature at some reference points. Results are

presented in figure 1 along with LGT results. Note that earlier this phenomenological new

qQGP model with a single system dependent adjustable parameter explained very well the

LGT results of Bielefeld group [21] on QGP system with massless quarks as discussed in

ref. [6].

3. Model with finite µ

Let us next consider (2+1)-flavor system with finite µ and LGT results are available for

– 5 –



J
H
E
P
0
9
(
2
0
0
7
)
0
4
6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  1.5  2  2.5  3  3.5  4

T/Tc

nq---
T3

Figure 2: Plots of nB/T 3 as a function of T/Tc from our model of (2+1)-flavor QGP and also

with lattice data (symbols) [1] for µb = 100, 210, 330, 410 and 530 MeV from bottom to top.

quark density nq or baryon density (nB) and difference in pressure from µ = 0 case (∆P ≡
P (T, µ) − P (T, µ = 0)). Here µ is the quark chemical potential which is one third of the

baryon chemical potential. The present LGT results are with µB coming from up quarks

only and hence we need to consider only up quark density. Using the expression for the

number density, eq. (2.7), and after some algebra, we obtain,

nq

T 3
=

12

π2

∞
∑

l=1

(−1)l−1 1

l3

[

(

mq l

T

)2

K2

(

mq l

T

)

sinh

(

µ l

T

)

]

. (3.1)

Now we modify earlier m2
th(T ) to m2

th(T, µ) as

m2
th(T, µ) =

g2T 2

18
nf

(

1 +
µ

π2 T 2

)

, (3.2)

inspired by QCD perturbative calculations [2]. In our case nf = 3 and g2 is related to

two-loop order running coupling constant, discussed earlier, but need to be modified to

take account of finite µ. Following the work of Schneider [24] and Letessier, Rafelski [23],

now we change T/ΛT in eq. (2.11) as

T

ΛT

√

1 + a
µ2

T 2
, (3.3)

where a is equal to (1.91/2.91)2 in the calculation of Schneider and 1/π2 in a phenomeno-

logical model of Letessier and Rafelski. In our model Schneider’s αs(T, µ) works well.

– 6 –



J
H
E
P
0
9
(
2
0
0
7
)
0
4
6

From nq, we may obtain other thermodynamic quantities like,

∆P ≡ P (T, µ) − P (T, 0) =

∫ µ

0

nqdµ , (3.4)

and so on.

4. Results

In figure 1, we plotted P/T 4 Vs T/Tc for (2+1)-flavor QGP with µ = 0 and compared with

LGT data. We took effective number of flavors as neff
u = 2, neff

s = .5 and neff
f = 2.5. Quark

rest masses are mu0 = 65MeV and ms0 = 135MeV , values used in LGT simulations.

Only the parameter t0 ≡ ΛT /Tc is adjusted to get the best fit to LGT data on pressure and

is equal to 0.4. In figure 2, the baryon density (nB/T 3) is plotted as a function of T/Tc for

different values of baryon chemical potentials and compared with LGT results. In figure 3,

∆P/T 4 is plotted and compared with LGT results. As can be seen from the figures 2 and

3, curves of nB/T 3 and ∆P/T 4 almost lie close to that of LGT results without any new

parameters.

Thus, using our model with a minimum number of adjustable parameters we can

explain the lattice results from the high temperature side up to 1.2Tc. Very near to Tc,

probably one need to take account of confinement effects or effects of strongly coupled, non-

perturbative system, which is not there in our model. Note that in other qQGP models,

they have 4 adjustable parameters and still either nB/T 3 [11] or P/T 4 [10],one of them,

don’t fit LGT results well. Result from the QGP liquid model [23], is similar to ours, but

with two parameters apart from extra gluon mass.

5. Conclusions

Using our new formulation of qQGP phenomenological model, we were able to explain

LGT results on (2+1)-flavor QGP with just a single adjustable parameter which may

be related to QCD scale parameter and two fixed parameters (neff
f , P0). Our formalism

is thermodynamically consistent and no need of reformulation of SM with any arbitrary

constraints. We start from energy density and number density, well defined in SM for grand

canonical ensemble, and develop TD without TD insistency faced by other qQGP models.

One more departure from other qQGP models is that we assume that thermal mass is

equal to plasma frequency since it arises because of collective effects of plasma, instead of

QCD perturbative thermal mass. Earlier, using this model, we explained successfully the

LGT results of Bielefeld group on QGP with massless quarks [6]. Hence a simple model of

qQGP with a single parameter, related to QCD scale parameter, explains all existing LGT

results and may explain future results in LGT and relativistic heavy ion collisions.

Of course, there are many other models which all claim to fit the LGT results since they

have more than one adjustable parameters. Models with minimum number of parameters,

which fits LGT results well, are SCQGP [15] and liquid model [22, 23], both with two

adjustable parameters. All other models involve more than two adjustable parameters.
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Figure 3: Plots of ∆P/T 4 as a function of T/Tc from our model of (2+1)-flavor QGP and also

with lattice data (symbols) [1] for µb = 100, 210, 330, 410 and 530 MeV from bottom to top.

Models based on QCD perturbative and non-perturbative calculations [13, 14] fails to fit

the LGT results near Tc. Hence, it seems, phenomenological models based on the properties

of plasma with QCD inputs explains well the LGT results.
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